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The flow of a tubular film 
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The equations governing the free-surface flow of a tubular film of liquid are 
derived from physical arguments, which throw some light on the formal process 
described in part 1. The solutions of the equations are discussed, in particular 
with reference to the film-blowing process for the manufacture of thin sheets of 
thermoplastic material. The qualitative adequacy of a model based on the 
dominance of viscous forces is demonstrated, and the effect of surface tension, 
air drag and non-isothermal flow is discussed briefly. 

1. Introduction 
The work described below can be thought of either as an application of the 

formal results of part 1 (Pearson & Petrie 1970a), providing in addition a physical 
description of the approximations made there, or as a physically based approxi- 
mate solution of a practical problem, whose formal justification can be found in 
part 1. The authors hope that they have succeeded in separating the two parts of 
the work sufficiently for either to be intelligible on its own. 

The process studied here is one for the manufacture of a thin sheet or film of 
a thermoplastic, such as polyethylene, from molten material supplied under 
pressure by a screw extruder. Figure 1 illustrates the process schematically. 
The liquid is forced through an annular die and the tubular film produced is 
thinned by both an internal pressure and an axial tension. Thus, any element of 
the film is being drawn down in two directions as it flows from the die to the take- 
up rolls (which are usually vertically above the die). These are arranged to guide 
the film once it has solidified (and cooled sufficiently to prevent the film sticking 
to itself) from its cylindrical shape to a plane (‘layflat ’) form as it passes through 
the nip rolls. The nip rolls form an airtight seal, so that between them and the 
die the film forms a tubular bubble containg air at a pressure slightly above 
atmospheric. The air supply led in through the centre of the die is used only to  
adjust this pressure. 

The rate of cooling, and thus the distance to the freeze-line (the region where the 
molten polymer solidifies) is controlled by jets of cooling air from a ring sur- 
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rounding the bubble. The nip rolls are driven to provide the axial tension needed 
to take up the film, and might be driven at either constant speed or constant 
torque, usually the former. (The implications of this choice for the problem of the 
control of product dimensions are discussed elsewhere-Pearson & Petrie 1970 b. )  

cooling ‘air 

FIGURE 1. Diagram of the am-blowing process; section in a vertical plane. 

As far as the steady-state problem is concerned we can take either the speed or 
the torque as prescribed, and the choice which is most convenient for our analysis 
of the flow of the liquid polymer is of a given axial tension applied to the film at  
the freeze-line. 

What we seek to do here is to set up and use a mathematical model of the %ow 
in the region between the die and the freeze-line, where we have the free-surface 
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flow of a highly viscous liquid. We need to prescribe at least seven parameters in 
order to get a determinate problem, and these are taken to be the bubble radius 
and the film thickness at  the die, the freeze-line distance, the pressure difference 
across the bubble, the axial tension at the freeze-line, the volumetric flow rate, 
and the viscosity of the liquid. If we wish to take account of any but the essential 
factors controlling the flow, more parameters will be required. We can then 
predict the bubble shape, its thickness and velocity, and the forces acting in it. 
In particular, the dimensionless ratios of bubble radius, film thickness and 
velocity a t  the freeze-line to the corresponding quantities at the die can be 
predicted in terms of three numbers, which are essentially dimensionless values 
of the freeze-line distance, the excess pressure inside the bubble, and the axial 
tension at  the freeze-line. (The velocity ratio and the axial tension can be trans- 
posed between the lists of dependent and independent quantities, if the velocity, 
rather than the tension, is prescribed at  the freeze-line.) 

2. The mathematical model 
The basic assumptions made are that the forces controlling the flow are the 

viscous forces arising in the steady axisymmetric isothermal flow of a homo- 
geneous Newtonian liquid, and that the film is thin enough for variations in the 
flow field across it to be ignored, and for the velocity gradients to be approximated 
locally by those of a plane film being extended bi-axially. These assumptions, 
and the neglect of the effects of gravity, surface tension, air drag and the inertia 
of the liquid, are justified formally to some extent in part 1. They are justified 
practically, in part at  least, by the fact that reasonable predictions are obtained. 

Further experimental verification is required before the range of applicability 
of the simple viscous model can be inferred. Certainly cases are known where other 
factors cannot be neglected, in particular gravity. The present model can be ex- 
tended to cover most of these cases. 

Equations governing the flow have already been derived in part 1 (equations 
(16) and (1 7) )  by means of a formal perturbation expansion. Here an alternative, 
less formal, approach is shown to lead to the same results, and a t  the same time 
to help in the understanding of the essential physics of the situation. The two 
relevant equations are based on a simple balance of forces, one in the axial direc- 
tion and the other in the direction normal to the film surface. 

We take cylindrical polar co-ordinates (p,  q5, z )  as shown in figures 1 and 2, 
and define the following symbols: 

a is the bubble radius (measured normal to the z-axis) which takes values a,, 
at z = 0 (at the die) and A a t  z = 2 (at the freeze-line); corresponding dimension- 
less quantities are r = a/ao and R = A/a,. (T corresponds to h,, in part 1.) 

his the film thickness (measured normal to the film surface), which takes the 
values h, at z = 0 and H at z = 2; since h only appears as aratio, it is not necessary 
to define a dimensionless thickness. @/a, corresponds to eh,, in part 1.) 
x = z/ao and X = Z/ao are dimensionless values of the axial co-ordinate and of 

the freeze-line distance respectively. 
0 is the angle between the bubble profile and the z-axis, so that tan 0 = da/dz. 

39-2 
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p is the liquid viscosity and Q the total volumetric flow rate. 
A is the pressure difference across the bubble, p (inside) - p  (outside), and F, is 

the axial force applied at  the freeze-line. 
In order to obtain the velocity gradients, we define local Cartesian co-ordinates 

(tl, t2, t3) at a point P in the film, with & in the direction of flow, t2 normal to 
the film and t3 in the transverse (circumferential) direction (see figure 2). For 
definiteness we take the origin P to be on the inner surface; then the &-axis 

FIGURE 2 .  Co-ordinate systems; sectioned plan and elevation of a portion of the film. 

meets the outer surface at  t2 = h. (At P, the ,& directions coincide with the xi 
directions of the ‘intrinsic’ co-ordinates used in part 1.) In this co-ordinate 
system, we take velocity components (vl, v2, v3),  and proceed to obtain approxima- 
tions to the velocity gradients av,/a&. 

On the inner surface g2 = 0, v2 is zero, and on the outer surface v2 = Dh/Dt, 
so that, neglecting the variation of av2/at2 with t2, we obtain 

av2/at2 = h-lDh/Dt. 

Similarly, using the axisymmetry condition and the relation t3 = atan(6, we 
obtain 

av3/ag3 = a-IDa/Dt; 
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&l/a& = - (h-lDh/Dt + a-lDalDt). 
and continuity gives 
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These quantities are all O(1); the other velocity gradients are O(h/a); they are 
ignored in this analysis. Treating a and has functions of z ,  and using dzld[ ,  = cos 6' 
and D[,/Dt = vl, we obtain 

avl/a& = - V ~ C O S  B(a-lda/dz+ h-ldhldz). 

8v2/at2 = v1 cos B h-l dhldx, 

8v3/at3 = v1 cos 0 a-1 daldz. and 

(It may readily be shown that these correspond to the first-order terms obtainable 
from equation (3)) part 1.) 

The principal stresses are given by 

pii = - p  + 2p.a~,/a[~, for i = 1,2,  and 3, 

and the condition that p,, is zero (relative to atmospheric pressure) at  the free 
surfaces gives, for the hydrostatic pressure p, 

p = 2pvl cos 8 h-l dhldz (1)  

(cf. equation (15), part 1). This imposes the condition that A < p ;  i.e. A is 
O(h/a) multiplied by a typical viscous stress. (There is no inconsistency in 
ignoring A here while using it below, since in the equations below it balances 
terms of order h multiplied by a typical viscous stress.) The stresses are functions 
of t1 only; and they can be integrated across the film to give the longitudinal and 
transverse (hoop) forces per unit length, PL ( = hpll) andP, ( = hp,,),respectively. 
Using the overall equation of continuity, Q = 27rahv1, to eliminate v1 gives finally 

and 

pQcos8 1 da 2 dh p - _ _ _ _  --+--  
L -  7ra (adz hdz]' 

P -  (3) 

The balance of the total axial force between cross-sections at z and at  2 (the 
freeze-line) gives, neglecting inertial forces, 

SnapL cos I3 - na2A = F, - nAzA; (4) 

that of the normal forces on the film gives 

A = pL/RL -k pH/RH, ( 5 )  

where R, and RH are the principal radii of curvature, 

R, = a sec 0 and RL = - sec3 B/(d2a/dz2). 

(See e.g. Novozhilov 1959, p. 96.) 
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Introducing the dimensionless variables defined above and the dimensionless 
parameters, 

B = na$A/pQ (a dimensionless pressure difference), 

T, = aoFZ/pQ (a dimensionless axial force), 

and 

and writing ’ for dldx give, after some rearrangement, 

T = T,- R2B (the total dimensionless axial force a t  any cross-section), 

h’/h = - &r’/r - $sec2B(T +r2B) = - &r’/r - $(l +r ’2 )  (T +r2B) ,  (6) 

and (7) 

(In order to show the equivalence of these equations to  (16) and (17), part I ,  
set B = P1/2$,, dx/dxl = cosd, and eliminate T by differentiation.) Thus, we 
have found one integral of the equations derived in part 1, and have separated 
the problem of finding the shape of the bubble from that of finding the film 
thickness, ( 7 )  being an equation in r alone. 

Two boundary conditions for (6) and (7) can be stated immediately. They are 

2r2(T + r2B) r“ = 6r’ + r sec28(T - 3r2B) = 6r’ + r( 1 + T I 2 )  (T - 3r2B). 

h=h,, r = l  a t  x = O .  (8) 

A second boundary condition for (7)  could be prescribed arbitrarily as 

r’ = b a t  x = 0, 

but physical considerations suggest that it is conditions a t  the freeze-line end of 
the bubble that will control the process. If the material freezes (i.e. p -+ co), 
then r’ must become zero beyond that line, no further deformation being possible. 
It is intuitively obvious that the relation, 

r ’ =  0, x = X ,  (9) 

can be applied to the molten region also, provided PL and PH remain bounded. 
To show this in the case of rapid freezing, we suppose that the viscosity changes 
from its constant finite value yo to an infinite value within a region of length e 
(measured in the x-direction) where E can later + 0. If this is the case, then r can 
be taken as constant in (7) and we get a relation of the form, 

r’’ = A p ’  + B( 1 + r’2).  

Here A and B are constants, fixed by the parameters defining the problem, 
r’ = 0 at x = X and p varies from ,ao to infinity in the range [ X  - E ,  X I .  Ele- 
mentary argument shows that for suitable p, say 

P = P0(4(X - x))4 

the term r“ is always O(1) and so r‘ is always O ( E ) .  Hence, by letting e +  0, we 
recover (9) as the suitable boundary condition we sought. It is worth noting 
that the same argument does not imply h’ = 0 a t  x = X ,  which would otherwise 
overdetermine the problem. 

The consequence of these boundary conditions is that the solution of (6),  ( 7 )  
will not in general yield r‘ = 0 a t  x = 0, although for large enough X this is very 
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nearly true. This is not incompatible with the equations governing flow at a 
die exit; though at  the level of approximation we are concerned with, we cannot 
investigate this matter further. 

3. Discussion 3.1. The phase-plane 

We now have a non-linear two-point boundary-value problem; both for the 
qualitative discussion, and for the numerical solution of (7), it is convenient to 
take initial conditions T = R, r' = 0 at x = X, then modify the choice of R until 
we get r = 1 at x = 0. From this point of view, the parameters B (pressure), 
Tz (axial tension), X (freeze-line distance) and the initial value R completely 
specify the bubble shape (T = Tz - R2B), and we avoid the problem that, if we 
start from x = 0, R and hence the parameter T ,  which appears in the equation, 
are not known in advance. (It would be necessary t o  guess values for r' at x = 0 
and for T ,  two guesses instead of one.) 

We rewrite (7)  as 

1 (10) 
dr /dx  = s, 

ds/dx = (6s + r( 1 + s2) (T - 3r2B)}/{2r2(T + PB)}, 

and study the trajectories (solution curves) of system (10) in the phase plane 
with co-ordinates ( r ,  s). The system 

(11) I dr ld t  = - 2r2s(T + r2B), 

dsldt = - 6s - r( 1 + s2) ( T -  3r2B), 

where dx ld t  = - 2r2(T +r2B), has the same trajectories as system (lo), with x 
decreasing in the direction of 6 increasing for r2(T + r2B) > 0. Problems of in- 
terpretation on r = 0 and on T + r2B = 0 will be postponed. 

Since the equations are unaltered if the signs of r and s are both changed, 
and since the half-lines r = 0, s > 0 and r = 0, s < 0 are solutions of system (1 l), 
and so may not be crossed by any other trajectories, we confine our attention to 
the half-plane r 2 0. In  order to keep the discussion manageable, we restrict 
attention to B > 0 and Tz > 0, the ranges relevant to the problem which 
motivates this study, and consider the three cases T > 0, T = 0 and T < 0. 
These are further subdivided, according to the number and type of the singular 
points, into: 

l(a), 

1(c), 

3(a ) ,  

T3 > 81B/16 > 0, 

81BI16 > T3 > 0, 

0 > T3 > -9B/16, 

l ( b ) ,  T3 = 81B/16 > 0, 

2, T = 0,  

3 ( b ) ,  

3 ( ~ ) ,  

0 > T3 = - 9B/l6,  

0 > -9B/16 > T3. 

The results are summarized here and illustrated in figures 3-5. The appendix 
gives more details and outlines proofs of some of the statements made here. 

Case 1. There are two singular points in r 2 0, namely (0, 0), which is a saddle- 
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1 

0.5 

0 

-0.5 

(a)  (b)  

direction of z decreasing: ( a )  case l(a), (B/T3)& = +; ( b )  case l ( c ) ,  (B/T3)* = Q. v = 8, 
FIGURE 3. Phase plane for case 1, T > 0. Sketches of typical trajectories, arrows in the 

u = r(B/T)i. 

1 

0 

- 0.5 

FIGURE 4. Phase plane for case 2, T = 0. Sketches of typical trajectories, arrows in the 
direction of x decreasing. v = s, u = rB$. 

9 
L 

1 

- I  

(a)  ( b )  
FIGURE 5. Phase plane for case 3, T < 0. Sketches of typical trajectories, arrows in the 
direction of x decreasing. (a)  Case 3 (a) ,  ( -  B/T3)* = 8; ( 6 )  case 3 (c), ( -  B/T3)4 = +. 2) = S, 

u = r( - B/T)*. 
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point, and ((T/3B)t, 0)) which is a focus in case 1 (a)  and a node in cases 1 (b)  
and 1 ( c ) .  This latter singular point is stable as 6 increases (x decreases, from the 
freeze-line towards the die). It can further be shown that there are no closed 
trajectories; hence, that every trajectory starting in r > 0 tends to ((T/3B)4, 0 )  
a s x +  -CQ. 

Case 2. The only singular point is the origin, which is a node, stable as 5 in- 
creases. 

Case 3. The origin is a saddle-point; in case 3 (c), this is the only singular point. 
In case 3(b ) ,  there is a saddle-node at  (( - T/B)3,1). In  case 3(a) ,  the point 
(( - T/B)t ,  q )  is a node (stable as 5 increases) ; the point (( - T/B)t,  l / q )  is a saddle- 
point, where q is the smaller root of 4q2 - 6( - BIT74 q + 4 = 0. 

In case 3, r < (-  T/B)a corresponds to T + r2B < 0;  so in figure 5 the arrows 
on the trajectories (in the direction of x decreasing) show 6 decreasing for 
r < (- T/B)t  and increasing for r > ( - T/B)*. For system (lo), moreover, the 
points (( - T/B)t,  q)  and (( - T/B)t,  l / q )  are not strictly speaking singular points, 
since they are not themselves solutions of the equations, and solutions tending 
to these points do in fact reach them in a finite distance (x). They are rather 
points of bifurcation of these solutions, where dsldx ( = d2r/dx2) is indeterminate. 
The physical interpretation of this non-uniqueness is discussed below. (See also 
appendix.) 

3.2. Results of the qualitative analysis 

First we discuss case 3,  where T, is so small that there is a real, positive value of r ,  
r = (R2- T,/B)t, for which T +r2B vanishes, and ( 7 )  becomes singular. From (6) 
(which is (4) in dimensionless form), we see that this means that the longitudinal 
tension in the bubble PL vanishes at  this value ofr, so that the radius of curvature 
RL in ( 5 )  is indeterminate. With this interpretation (that the film becomes slack), 
it is not surprising that our model fails to predict a unique shape for the bubble; 
to keep in touch with the practical process, we insist that the axial tension applied 
is sufficient to keep the film taut between the die and the freeze-line. It is sufficient 
for this to require that T, > B(R2- 1) .  

Numerical solution of the equations (see below) shows that cases 2 and 3 give 
rise to large blow ratios R and very small freeze-line distances X and thickness 
reductions h,/H compared with the values observed in practice, so subsequent 
discussion is based on case 1. As was mentioned above the qualitative analysis 
provides additional reasons for the choice of boundary condition that was made 
(r‘ = 0 at x = X). As x decreases (proceeding towards the die), the trajectories 
approach the singular point and, for large enough freeze-line heights, r’ must be 
small at the die. (Computation suggests that r’ will fall below 0-1, in a distance of 
about 3 die diameters, measured from the freeze-line.) Thus, the observed be- 
haviour of the solutions is predicted without the necessity of imposing any 
condition at  x = 0. A similar argument does not apply for x increasing, as we 
approach the freeze-line; moreover, d2r/dx2 is large far from the singular point, 
so that a small change in X would cause a large change in drlda: at  x = X (i.e. the 
bubble shape would be critically dependent on X ,  and similarly on the other 
parameters, unless the condition on drldx is imposed at  the freeze-line). 
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We can also make some numerical predictions for long bubbles, since all 
trajectories tend to the singular point r = (T/3B)t,  r' = 0, as x + - 00. Hence, as 
X - + O ~ ,  the die radius tends to (T/3B)*; since r (0)  = 1, we have in the limit 
T = 3B, so that the blow ratio R tends to the value (T,/B- 3) t .  In  case 1 (c), 
provided R is not too large, r decreases monotonically from R to (TI3B)B; so 
the die radius 1 must be greater than the latter value. Hence, 

R2 > Tz/B - 3, 

and we have a minimum blow ratio attained for large freeze-line distances. The 
numerical work confirms that this behaviour is relevant for values of the para- 
meters in the practical range of interest; it also shows that the limiting value is 
nearly attained in many cases for freeze-line distances of about 10 times the die 
radius (X M 10). 

Again, this limiting value is independent of liquid flow rate and viscosity, 
since T,/B = FZ/raiA; it depends only on the applied forces and the die radius. 
For a long bubble, the blow ratio increases with increased axial tension, and 
with decreased die radius and internal pressure. This last result is less surprising 
when one recalls the behaviour of a spherical bubble acted on by an internal 
pressure and surface tension forces. (The excess pressure required to sustain the 
bubble is inversely proportional to its radius.) 

We can use the foregoing to estimate the effect of increasing the freeze-line 
distance on the thickness reduction h,/H. Once the bubble is long enough for the 
limiting value of R to be substantially attained, any increase in X corresponds 
to a lengthening of the neck of the bubble, where r is close to 1, and r' is close to 0. 
We consider freeze-line distances X ,  and X,, with corresponding film thicknesses 
HI and H,; if R is the same in both cases, we have 

(ho/Hl)/(h,o/Hz) = expIx'  a( 1 + rI2) (T + r2B) dz. 

Between X ,  and X, (measuring from the freeze-line), r w 1 and T I  M 0, so that 
X, 

( h O / ~ l ) l ( ~ O / H A  %5 exp P ( X ,  - X,t> 
(using T/3B w 1). Estimates obtained in this way are compared with computed 
values of the ratio H,/H, in table 1. 

Pressure difference (B)  0.1 0.1 0.1 0.2 0.2 0.3 
Axial tension ( T z )  0.5 0.5 2.0 1.0 2.5 2.0 
Limiting blow ratio 1.41 1.41 4.12 1.41 3.08 1.91 

( R  = (Tz/B- 3)t) 

Lower freeze-line distance (X,)  20 15 10 10 4 6 
Upper freeze-line distance (XI) 30 20 15 15 10 10 

Estimate of H,/H,, 2.72 1.65 1.65 2.72 3.32 3.32 

Computed valuo of H , / H ,  2.84 1.74 1.86 2.89 3.61 3.46 
exp (BW, - X , ) )  

TABLE 1. Comparison of estimated and computed values of the change in thickness 
reduction due to a change in freeze-line distance 
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3.3. Numerical results 
Numerical estimates of the bubble shape and thickness were obtained by a 
Runge-Kutta integration procedure, no special precautions being necessary. 
Values of B, T,, and X were fixed, R was guessed, and (7) was integrated from 
x = X (with r = R and &/ax = 0 )  to x = 0. This process was repeated with 
improved guesses for R, until the condition r = 1 at x = 0 was satisfied.i Then (6) 
was integrated to give h,/H (and h,/h(x) if desired). Some typical bubble shapes 
are shown in figure 6 for values of the parameters corresponding to cases 1 (a) ,  
1 (c), 2 and 3 (a). The shape for case 1 (c) is similar to those observed in practice. 

I R  

X X 
-+ 

FIGURE 6. Sketches of typical bubble shapes: (a)  case 1 (a), 
(6) case 1(c), (c) case 2, (d) case 3(a).  

For the film-blowing process two of the important parameters are the product 
dimensions, which are determined by A and H ,  so the dimensionless ratios 
R (=  Afa,) and h,/H are the quantities we wish to predict as functions of the 
dimensionless parameters B, T, and X (i.e. of the physical variables A, F,, 8, a,, 
p and Q ) .  For results of practical interest, we may restrict attention to the ranges 

t If no other information was available (e.g. from calculations with similar values of 
the parameters), R was chosen by linear interpolation. The f i s t  two values used in that case 
were ((Tz/B) - 3$, the limiting value of R as X + CO, and (Tz/B)*, the limiting value of R 
as the film tension was allowed to fall to zero at some point in a long film. In  practice, 
the final value was often quite near the f is t  of these values, as can be seen in figure 7.  
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1.5 < R < 3, 10 < h,/H < 30 and 8 < X < 20; hence, we have the restrictions 
0.075 < B 6 0.4 and 0.5 d T, d 2.5.  It is not easy to estimate p (since in practice 
it could vary from 104 to  lo6 poise along the film, on account of the variations 
of temperature, and, to  a lesser extent, of shear rate); there are no data from which 
Fz can be obtained (so far as we know). Thus, the above is probably the most 
reliable way of estimating the relevant values of the parameters. If we take the 
values (appropriate to  a small-scale experimental arrangement) a, = 3.75 cm, 
Q = 4cm3/sec, A = 70 N/m2 ( z 7 x lo-* atmospheres), p = 3 x lo5 poise, and 
F, = 5N (z 1 lb. wt.), we obtain B = 0.097 and T, = 1.56. 

4 

3 
R1. 

2 

I I ! I I 

10 20 30 40 50 

JLOlH 
--3 

FIGURE 7.  Typical results: Blow ratio R against thickness reduction ho/H. Curves of 
constant B and Tz, B and X, and T z  and X. (a) B = 0.1, T z  = 2 ;  (b) B = 0.2, T z  = 2; 
(c) B = 0.1, Tz = 1 ;  (d )  B = 0.2, T z  = 1;  ( e )  B = 0.1, T z  = 0.5; (f) B = 0.1, ,Y = 10; 
(9)  B = 0.2, X = 5; (h) B zz 0.1, X = 20; (i) B ~ 0 . 2 ,  X = 10; ( j )  Tz = 2, X = 10; 
(k) T z  = 1, X = 20; ( I )  T z  = 1, X = 10. 

Pressure difference (B)  0.2 0.175 0.165 0.1 0.09 
Axial tension (Tz) 2.3 2.0 1.85 1.15 1.0 
Freeze-line distance (X) 8 9 10 20 23 

TABLE 2. Typical values of the dimensionless parameters for blow ratio (R)  = 3 and 
thickness reduction (ho/H) = 20 

The effect of the parameters B, Tz and X on the product dimensions is shown in 
figure 7, where R is plotted against h,/H for fixed values of pairs of these para- 
meters. Table 2 shows how these parameters are interrelated by giving typical 
values of the three of them for R = 3 and h,/H = 20. (One of B, T, and X can 
be chosen arbitrarily.) 

As mentioned in $1,  the take-up of the film, which has here been assumed to 
imply a prescribed axial tension T, a t  the freeze-line, could be at  constant velocity, 
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equivalent to fixing the axial velocity a t  the freeze-line. From continuity 
(Q = 27rahv,), we deduce that R = v,(O) h,/v,(X) H, giving a straight line of slope 
v,(O)/v,(X) on figure 7. Thus, fixing values of B and X (giving another line on 
figure 7), as well as this ratio, suffices to determine the solution of the problem. 
To compute a solution from these conditions, a value of T, would be guessed, 
and the value of T, needed to give the prescribed value of the ratio v,(O)/v,(X) 
would be found by iteration. 

3.4. Neglected factors 
The effect on the feasibility of this approach to the analysis of the film-blowing 
process of some of the many neglected factors has been discussed from the point 
of view of the asymptotic analysis in part 1 (Pearson & Petrie 1 9 7 0 ~ ) .  Here 
remarks will be confined to four topics where the less formal approach can be 
expected to be helpful. In  particular, no mention is made here of gravity, inertia 
or effects due to a thick film. (In practice the ratio of film thickness to bubble 
radius will lie between 0.05 and 0.005 at the die, and will be smaller downstream.) 

The details of the flow at the die exit, where the flow changes from a constrained 
to a free-surface flow, have been ignored, despite the quite large 'die-swell' 
effects observed in the flow of molten polymers. (See e.g. Pearson 1966, p. 48.) The 
assumption, that the effects of this transition are confined to a region near the 
die exit, allows the crude approach of 'correcting' the initial values a, and h, 
from the die dimensions to the values the die dimensions would have to take in 
the absence of any such effects, so as to give the same downstream flow. With 
the present state of knowledge of the transition flow, this is an empirical correction. 

Air drag can perhaps be dealt with (iteratively if necessary), by taking the 
results of the above analysis in its absence, and calculating the air drag on a 
bubble of that fixed shape and velocity. Taylor (1959) leads one to hope that the 
effect will be small. (Taylor estimates a 7 yo velocity reduction due to air drag 
on a water bell.) 

The effect of surface tension can easily be allowed for in this approach, with the 
proviso that, if the surface tension forces are very much greater than the viscous 
forces, the film thickness is not found in the first approximation, since the equa- 
tions replacing (6) and (7 )  become equivalent. We write PL+ 2r and PH + 2I' for 
PLand P' in (4) and (5)' where I? is the surface tension a t  the liquid-air interface, 
and then terms 4Grsece and 2Gr2sece are added to the right-hand sides of (6) 
and (7), respectively, where G = 271.4 I'/,uQ, the ratio of surface tension to viscous 
forces. The modified equations have not been studied in detail, but the limiting 
value of R as X + co is readily obtained from 

1 = (&)"([l+&]'+[m] G2 4 ), where R 2 =  (T,-T)/B, 

and the phase plane is not altered in any major way for T > 0 and G not too 
large. The non-uniqueness in case 3 is not avoided by taking surface tension into 
consideration. 

Temperature affects the mechanics of the flow through the dependence of 
viscosity on temperature; an attempt was made to estimate this effect by allowing 
/I to vary with position along the film. The viscosity was taken to be ,uo at the 
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freeze-line, where it changes discontinuously as in all the models considered, 
and to decrease towards the die (withincreasing temperature) in a predetermined 
way. Functions,u/,u, = 1 - O.O5(X - x), exp { - O.O5(X - x)> and exp { - 0.5(X - x)} 
were used for X up to 8, 8 and 10 respectively, giving viscosity reductions of 
40 %, 33 yo and 99 % over the length of the bubble. The bubble shape was not 
significantly altered in any of these cases, the major effect being a considerable 
increase in the thickness reduction h,/H over the value it took in the constant 
viscosity case. This is in the main due to more rapid thinning of the film in the 
long neck of the bubble, where the liquid is hottest and least viscous. Obviously, 
this will have an important effect on the quantitative predictions, but it leaves 
the qualitative results substantially unaffected. A similar conclusion probably 
holds for the effect of the variation of viscosity with rate of shear. 

4. Conclusions 
We can, with reasonable confidence, deduce from the results of this work that 

the dominant factor controlling the flow is the balance between the viscous 
forces and the externally applied forces. The major shortcoming of the quan- 
titative predictions (for the practical process of making thermoplastic film) is 
likely to arise from the neglect of the temperature variation and its effect on the 
liquid viscosity. The effects of surface tension and air drag are certainly worth 
investigating, but seem unlikely to affect the main features of the flow. In large 
bubbles of thick film being slowly drawn, gravity becomes a limiting factor. 

Part of the work reported here was carried out while one of us (C. J. S. P.) held a 
Science Research Council Fellowship in the Department of Chemical Engineering 
a t  Cambridge. We are grateful to the Science Research Council, and to the Head 
of the Department, for enabling us to carry out this work. Some of the computa- 
tional work was done in the computing laboratories of Cambridge and of New- 
castle upon Tyne Universities; we are also grateful to the directors of these 
laboratories for the use of their facilities. 

Appendix. The phase plane for system (11) 
dr/d[ = - 2r2s(T+r2B), 

ds/d[ = - 6s - r( 1 + s2) (T - 3r2B). 

(i) The origin is a non-elementary singular point to which the theorems of 
Keil (Sansone & Conti 1964, pp. 256-267) may be applied. For T $. 0 (cases 1 and 
3), we write u = Tr, v = 6s + Tr, t = 66, and A = BIT3, to obtain 

where 

du/dt = g(u, v), 
dv/dt = w +f(u, v) ,  

and g(u, v) = +&(V - u) (1 + A d ) .  
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We identify (v, a)  with (x, y) of Keil’s theorems, and see that system (A 1) satisfies 
the hypotheses of the theorems; namely, that f and g are dominated by linear 
terms near (0, O ) ,  and that in a neighbourhood of (0, 0), excluding (0,O) itself, 
duldt and dvldt do not both vanish. 

From the first theorem, there are two and only two trajectories tangent to the 
v-axis at the origin, and for system (Al)  these are clearly the half-lines u = 0, 
v > 0 and u = 0, v < 0. The two regions, into which this pair of trajectories 
divides the plane, are considered separately; from the second theorem, the 
trajectories in each region fall into one of two classes: either (1) all trajectories 
are parabolic (i.e. they tend to the origin) and tangent to the u-axis a t  the origin, 
or (2) one trajectory is parabolic and tangent to the u-axis at  the origin, while 
all the other trajectories are hyperbolic (as are the trajectories near a saddle- 
point). Thus, the origin is either a node ((1) in both regions), a saddle-point 
((2) in both regions), or a saddle-node (( 1) in one region and (2) in the other region). 

We distinguish between these alternatives by means of the third theorem, 
by studying the slope dvldu of trajectories on either side of the isocline Jo (where 
dvldu = 0). We consider first the half-plane u > 0, where, if dvldu increases with v 
increasing across J,, we have (l), and, if dv/du decreases, we have (2). The converse 
is true in the half-plane u < 0. 

Here we approximate Jo near the origin by 

v = &( 1 + 108A) u3 + &AU5, 

so that for A > - 1/108 J, lies in the first and third quadrants (uv > 0). On v = 0, 
dv/du is given by 

av/au = (-u3(1+ i o s ~ ) - 5 ~ u 5 ) / { - 2 ~ 3 ( 1 + ~ U 2 ) } ,  

which is positive near the origin for A > -IjlOS, so that, from continuity 
arguments, dvldu in this case decreases as J, is crossed in the direction of v 
increasing. (And, in u < 0, it increases.) For A < - l/lOS, J, lies in the second 
and fourth quadrants, and dvldu is negative near the origin, leading to the same 
conclusion. Thus, for all values of A ,  the origin is a saddle-point with separatrices 
tangent to the u- and v-axes (i.e. the separatrices are the lines r = 0 and 
6s + Tr = 0 in the (r,  s)-plane). (See figures 3 and 5.) 

For T = 0, we set u = rB), v = s and t = - 6g to obtain 

du/dt = QUCV, 

dvldt = v - 4 ~ 3 (  1 + $), 

and apply the same methods. (See figure 4.) 
(ii) At the singular point ((T/3B)i,  0) of case 1 the equations are, writing 

W = r -  (T/3B)t,  dw/d< = ( 8T2/9B) s + 0(w2 + s2), 

ds/d< = - ~ T w  + 6s + 0(w2  + s2). 

The standard methods (see e.g. Sansone & Conti 1964, pp. 44-47) lead to the 
results that the point ((T/SB)#, 0) is a stable focus for 16T3/9B > 9, and a stable 
node for 16T3/9B < 9. In  the latter case, the critical directions are given by 
S/W = Y(B/T3)4 [l f (1 - 16T3/81B)$]. 
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(iii) Similarly, the results stated in the main text for the singular points of case 
3 (a)  can be obtained from 

d(r  - ( - T/B)*)/d( = - 4q( - T3/B)4 ( r  - ( - T/B)*) + O((r  - ( - T/B)4)2+ (s - q ) 2 ) ,  

d(s  - q)/df; = - 10(q2 + 1) T(r  - ( - T/B)B) + (8q( - T3/B)4 - 6 )  ( s  - q)  

+ O( ( r  - ( - + ( s  - q ) 2 ) ,  
for the point (1, q) ,  and 

d(r  - ( - T/B)i)/df;  = - ( 4 / q )  ( - T3/B)* (r - ( - T/B)&) 

+ O ( ( r - (  -T/B)i)2+(s- ~ / q ) ~ ) ,  

d(s-  I /q ) /d f ;  = -(10T(q2+ l ) /q2)  ( r - ( -T /B)~)+(8( -T3 /B)h /q -6 ) ( s -  l/q) 

+ O((r  - ( - T/B) i )2  + ( s  - l / q ) 2 )  

where q = $( -B/T3) t -  (( - 9B/16T3)  - 1);) and 0 > T3 > - 9B/16 .  
(iv) In case 3 ( b ) ,  we write u = r - ( - T/B)4, v = s - 1 to obtain 

du/df; = - 3~ + O(u2 + v2), 
dv/dc  = ~ ~ ( - B / T ) ~ u + O ( U ~ + V ~ ) ,  

so that u = v = 0 is a non-elementary singular point, which may be shown to be 
a saddle-node. (Sansone I% Conti 1964, pp. 256-267.) 

(v) In  case 3, solutions with dr1d.z: tending to co are possible and we can get 
more information by considering the ( r ,  @-plane, where tan8 = dr /dx ;  i.e. we 
have as phase space the surface of a cylinder rather than ‘a plane. System (1 1)  
becomes I (A 3) 

du/dt = - 2u2(u2 - 1 )  sin 8, 
d0/dt = cos 8(u( 1 + 3u2) - m sin 28) ,  

where u = r( -BIT);, m = 6(  -BIT3): 

and d t /dx  = 2 ( - T 3 / B ) i / 2 r 2 ( T  t r2B) cos 0 .  

In case 3 (a ) ,  system (A 3) has six singularities on u = 1 and a further four on u = 0 
in -n < 8 d n. Writing a for the smallest positive root of 

sin28 = 4/m (0 < a < an), 
theseare ( l , a ) ,  (l,fin-a), (l,Qn), (1, -n+ct), (1, -&--a), (1,  -in-) and ( O , O ) ,  
(0, in), (0, T), (0, -in). Solutions relevant to the physical problem start on 
8 = 0 with u > 1 (at the freeze-line) and such solutions, and in fact any solutions 
starting in u > 1, reach either the singularity (1 ,  a )  or (1, in), apart from the 
separatrices approaching (1, QT - a)  and Ieaving (1, - in). At these singularities, 
the solution of system (10) is indeterminate, but there are only certain possibilities 
open to it. For example, solutions leaving (1, a), apart from the ingoing separatrix 
to the origin, must approach either (1 ,  - in) or (0, in), and, by such arguments, 
certain types of solution can be predicted. The investigation of the solutions of 
the equations in this case are not discussed in more detail here, because they 
are not relevant to the particular physical problem motivating the analysis. 

(vi) The proof that in case 1 all trajectories in r > 0 tend to the singular point 
(( T/3B)B, 0 )  depends on showing that there is a family of closed curves in this half- 
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plane, which are always crossed from their exterior to their interior by trajectories 
as x decreases. System (1 1)  may be written 

dv - - m v  +u( l  - 3u2) (1  +v2) 
au 

- 
2u2( 1 + u2) v 

(where u = r(T/B)3, t = [(T3/B)4, m = 6(B/T3)9 and v = s), which can be in- 
tegrated to give v2 = Azc/(l + u 2 ) 2 -  1 +E(u),  

where A = (1 + U ) 2  (1 + V2)/Ufor the trajectory passing through the point ( U ,  V ) ,  
and 

Writing v; = Au/( l  + u ~ ) ~ -  1, we see that the curves v2 = v: are closed, sym- 
metrical about v = 0, and cut v = 0 once between u = 0 and u = 1/43, and once 
for u > 1/43. ( A  as defined above is never less than 56 J3, that minimum value 
giving a real value (0 )  for v only at  u = 1/43.) 

We treat vl as an approximation to v with error E ,  and show that E is always 
such that 1v1 < lull as we proceed in the direction of x decreasing. Now m > 0, 
u > 0, and for v > 0 u decreases with x decreasing along a trajectory, so we 
take u < U ,  and see immediately that E < 0. Similarly, for v < 0, we take u > U ,  
and again E < 0, so that v2 < v:, which is the desired result. Since the family of 
curves v2 = v: fills the half-plane u > 0, this completes the proof. 
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